Exact solutions of transaction cost nonlinear models for illiquid markets
نویسندگان
چکیده
منابع مشابه
Nonlinear option pricing models for illiquid markets: scaling properties and explicit solutions
Several models for the pricing of derivative securities in illiquid markets are discussed. A typical type of nonlinear partial differential equations arising from these investigation is studied. The scaling properties of these equations are discussed. Explicit solutions for one of the models are obtained and studied.
متن کاملModels of self-financing hedging strategies in illiquid markets: symmetry reductions and exact solutions
We study the general model of self-financing trading strategies in illiquid markets introduced by Schönbucher and Wilmott, 2000. A hedging strategy in the framework of this model satisfies a nonlinear partial differential equation (PDE) which contains some function g(a). This function is deep connected to an utility function. We describe the Lie symmetry algebra of this PDE and provide a comple...
متن کاملPricing Options in Illiquid Markets: Optimal Systems, Symmetry Reductions and Exact Solutions
We study a class of nonlinear pricing models which involves the feedback effect from the dynamic hedging strategies on the price of asset introduced by Sircar and Papanicolaou. We are first to study the case of a nonlinear demand function involved in the model. Using a Lie group analysis we investigate the symmetry properties of these nonlinear diffusion equations. We provide the optimal system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Computer Science
سال: 2020
ISSN: 2008-949X
DOI: 10.22436/jmcs.023.03.08